Abstract
Stress erythropoiesis describes the process of accelerating red blood cell (RBC) production in anemia. Among a number of important mediators of stress erythropoiesis, paracrine signals - involving cooperation between SCF/c-Kit signaling and other signaling inputs - are required for the activation/function of stress erythroid progenitors. Whereas many critical factors required to drive erythropoiesis in normal physiological conditions have been described, whether distinct mechanisms control developmental, steady-state, and stress erythropoiesis in anemia is poorly understood. Our prior work revealed that the Sterile Alpha Motif (SAM) Domain 14 (Samd14) gene is transcriptionally upregulated in a model of acute hemolytic anemia induced by the RBC-lysing chemical phenylhydrazine. Samd14 is regulated by GATA binding transcription factors via an intronic enhancer (Samd14-Enh). In a mouse knockout of Samd14-Enh (Samd14-Enh -/-), we established that the Samd14-Enh is dispensable for steady-state erythropoiesis but is required for recovery from severe hemolytic anemia. Samd14 promotes c-Kit signaling in vivo and ex vivo, and the SAM domain of Samd14 facilitates c-Kit-mediated cellular signaling and stress progenitor activity. In addition, the Samd14 SAM domain is functionally distinct from closely related SAM domains, which demonstrates a unique role for this SAM domain in stress signaling and cell survival. In our working model, Samd14-Enh is part of an ensemble of anemia-responsive enhancers which promote stress erythroid progenitor activity. However, the mechanism underlying Samd14's role in stress erythropoiesis is unknown.
To identify potential Samd14-interacting proteins that mediate its function, we performed immunoprecipitation-mass spectrometry on the Samd14 protein. We found that Samd14 interacted with α- and β heterodimers of the F-actin capping protein (CP) complex independent of the SAM domain. CP binds to actin during filament assembly/disassembly and plays a role in cell morphology, migration, and signaling. Deleting a 17 amino acid sequence near the N-terminus of Samd14 disrupted the Samd14-CP interaction. However, mutating the canonical RxR of the CP interaction (CPI) motif, which is required for CP-binding in other proteins, does not abrogate the Samd14-CP interaction. Moreover, replacing this sequence with the canonical CPI domain of CKIP-1 completely disrupts the interaction, indicating that other sequence features are required to maintain the Samd14-CP complex. Ex vivo knockdown of the β-subunit of CP (CPβ), which disrupts the integrity of the CP complex, decreased the percentage of early erythroid precursors (p<0.0001) and decreased (3-fold) progenitor activity as measured by colony formation assays (similar to knockdown of Samd14). Taken together, these data indicate that Samd14 interacts with CP via a unique CP binding (CPB) domain, and that the CP complex coordinates erythroid differentiation in stress erythroid progenitors.
To test the function of the Samd14-CP complex, we designed an ex vivo genetic complementation assay to express Samd14 lacking the CPB-domain (Samd14∆CPB) in stress erythroid progenitors isolated from anemic Samd14-Enh -/- mice. Phospho-AKT (Ser473) and phospho-ERK (Thr202/Tyr204) levels in Samd14∆CPB were, respectively, 2.2 fold (p=0.007) and ~7 fold (n=3) lower than wild type Samd14 expressing cells, 5 min post SCF stimulation. Relative to Samd14, Samd14∆CPB expression reduced burst forming unit-erythroid (BFU-E) (2.0 fold) and colony forming unit-erythroid (CFU-E) (1.5 fold). These results revealed that the Samd14-CP interaction is a determinant of BFU-E and CFU-E progenitor cell levels and function. Remarkably, as the requirement of the CPB domain in BFU-E and CFU-E progenitors is distinct from the Samd14-SAM domain (which promotes BFU-E but not CFU-E), the function of Samd14 in these two cell types may differ. Ongoing studies will examine whether the function of Samd14 extends beyond SCF/c-Kit signaling and establish cell type-dependent functions of Samd14 and Samd14-interacting proteins. Given the critical importance of c-Kit signaling in hematopoiesis, the role of Samd14 in mediating pathway activation, and our discovery implicating the capping protein complex in erythropoiesis, it is worth considering the pathological implications of this mechanism in acute/chronic anemia and leukemia.
No relevant conflicts of interest to declare.